The B Programming Language and Environment

A new programming language and environment
for personal computing designed at the CWI

by Steven Pemberton

New computers, old languages

It is a common observation that the latest personal computers are very
powerful. Certainly more powerful and more capacious than many of the
previous generation of ‘large’ computers. Thus, it is quite feasible that many
personal computers will spend most of their time idle, not from lack of use,
but from under-filled capacity. And this is not because of delusions of gran-
deur on the part of the purchaser: the central processor, the part that is
responsible for much of the measure of speed in a computer, is but a tiny
part of the cost of a modern computer; there is no economic (or other)
advantage in using a slower processor.

It is therefore rather surprising to realise that most programming on per-
sonal computers is done with programming languages that are for the most
part IS5 to 20 years old, languages designed for computers of a previous gen-
eration (or before). In particular, whatever personal computer you buy, you
can be sure that the one language that the manufacturer has supplied for you
is BASIC, a language designed in the mid-sixties, and which has been
described as “an adaptation to early and very marginal computer technology”
[1]. Thus you have the strange situation of people programming the comput-
ers of the eighties with a language of the sixties, a language unable to take
advantage of the increased capabilities of the newer machines.

Two main advantages of BASIC are that it is interactive, and that it is sim-
ple. Interactiveness is the ability to type in and run a program immediately
without going through any intermediate stages like translating the program
into machine code, and to correct a program and re-run it immediately.
Strictly speaking, this is a property of an implementation of a language, and
not of the language itself, since it is in principle possible to make an interac-
tive implementation of any language, or a non-interactive version of BASIC.
But notwithstanding, a language usually has features that orient it more or
less towards interactive implementation, and BASIC is usually implemented
interactively, and most other languages are not.

Simplicity is a property often claimed for a programming language or sys-
tem, without the term being properly clarified. For there are two, in some
ways conflicting, senses to the word. You can have definitional simplicity,
where there are only a few concepts, and you can have what might be called
psychological simplicity, where the concepts are closest to your needs. A



couple of examples.
© The idea of a Turing machine is specifically to give the simplest model
of a computational machine. No one however would consider it simple
to program for.
© Boolean algebra can be expressed using a single operator ‘not and’.
However, no one would consider the expression

(q nand (q nand q)) nand ((p nand p) nand (q nand q))

as simpler than the equivalent

not (p or q)

despite the larger number of concepts in the second.

The simplicity of BASIC is actually a definitional one. It is easy to imple-
ment, and has few concepts to be learnt, but once learnt, it only remains easy
to use for very small programs. Beyond that it is like cutting your lawn with
a pair of scissors.

In schools

BASIC is also the principle programming language taught in schools.
Apart from the perceived simplicity, it is usually the case that schools simply
could not afford machines large enough to run anything other than BASIC.
That situation will change quickly enough with the coming generation of
cheap large computers, but the risk is that schools will continue using BASIC
from sheer momentum, and perceived ‘investment’ in the language (a com-
mon barrier to change outside schools too). Risk, because BASIC has little
to recommend it for educational use (and I say this as someone who has had
to teach students coming from schools where they have learnt to program
with BASIC). Just as with teaching yourself to type with one finger, where if
you then want to learn to type properly you must first get rid of your old
habits, BASIC’s paucity of structuring facilities means that much time has to
be dedicated to learning ways of getting round its expressive poverty, and the
student ends up learning bad habits that must only be unlearnt in order to
progress to other languages.
Well, either that, or they learn nothing at all, for quoting from [I] again:
“For the vast majority of students who learn to program in BASIC, learning
to program means learning a few set pieces of programming from a textbook
and devoting the rest of their time at the terminal to playing computer
games.”



B
B is a programming language being designed and implemented at the CWI,

together with an integrated programming environment (it should be noted
that ‘B’ is just a working title; the system will gain its definitive name when
the language is frozen.) It was originally started in 1975 in an attempt to
design a language for beginners as a suitable replacement for BASIC. In the
intervening years the emphasis of the project has shifted from “beginners” to
“personal computing”, but the main design objectives have remained the
same:

o simplicity;

o suitability for interactive use;

© availability of constructs for structured programming.

The design of the language has proceeded iteratively, and the language as it
now stands is the third iteration of this process. The first two iterations were
the work of Lambert Meertens and Leo Geurts of the CWI (then called the
Mathematical Centre) in 1975-6 and 1977-9, and were more in the line of
definitionally simple, being easy to learn and easy to implement.

In the third iteration of B, designed in 1979-81 with the addition of Robert
Dewar of New York University, it became psychologically simple: it is still
easy to learn, by having few constructs, but is now also easy to use, by hav-
ing powerful constructs, without the sorts of restrictions that professional
programmers are trained to put up with, but that a newcomer finds irritating,
unreasonable or silly.

However, B is not just a language, but a complete programming environ-
ment. Traditional computer use for programming involves not only learning
the programming language, but also a whole host of sub-systems and their
commands, often completely separate and non-cooperating. B on the other
hand shows one face at all times to the user, and it is not necessary to learn
anything outside the B system.

Simplicity

B has just two basic data types: texts and numbers, and three ways of com-
bining other values: compounds, lists and tables.

Numbers have two surprises for the seasoned computer user: firstly, on the
basis of the maxim of no restrictions, numbers may be as big as wanted
(within, of course, the physical limits of the computer’s available memory);
you may just as easily calculate 10 as 10°. In fact a Dutch newspaper
recently dedicated a whole page to printing the value 2" —1 (the current
largest prime), which had been calculated with the B program

WRITE 2%%132049-1

which, though it took a while to run, nevertheless produced the final answer
consisting of more than 37000 digits.
Secondly, as long as it is possible, numbers are always kept exact, even



fractional numbers. Thus, as long as you use exactness-preserving operations,
such as addition, subtraction, multiplication, and even division, a number is
calculated exactly. Operations such as taking the square root cannot of
course produce an exact result in general, and so in this case an approximate
number results, rounded to some length.

Mathematicians and computer scientists alike are often surprised by the
following little program that uses the properties of arithmetic in B to calcu-
late the digits of 7 by evaluating the continued fraction

4
I

4
9

1+
3+

5+

2
Y S
Qk+D)+ -

HOW/TO PI:
WRITE #3.~#
PUT 3, 0, 40, 4, 24, 0, 1 INk, a, b, c, d, e, f
WHILE 1 = 1:
PUT kx#2, 2#k+1, k+t IN p, q, k
PUT b, p*a+qxb, d, pxc+qxd IN a, b, ¢, d
PUT f, floor(b/d) IN e, f
WHILE e = f:
WRITE e<«<1
PUT 10%(a-exc), 10x(b-fxd) IN a, b
PUT floor(a/c), floor(b/d) IN e, f

Texts are strings of printable characters. Unlike many other languages B
has a full range of operations on texts, such as joining texts together, replicat-
ing them, taking sub-strings and so on. Just as with all types in B, there is
no maximum limit imposed on the size of a text, nor does the size have to be
declared in advance.

Compounds are the way of making tuples, or records as they are called in
some other languages, for instance for making complex numbers:

PUT 0, 1 IN z.

Lists are sorted collections of elements, again unrestricted in size. The ele-
ments of a given list must all be of the same type, but otherwise, and this is
another surprise for the experienced programmer, may be of any type. Thus
you may have lists of texts, numbers, compounds, lists of other lists, and so
on. Elements may be duplicated; thus a list is a multiset or bag. You can
insert elements, delete elements, find out if an element is present, find the size
of a list, and so on. Here is a program that uses lists of numbers and the
sieve method to calculate primes.



HOW/TO SIEVE‘TO n: \name is SIEVE’TO
PUT {2..n} IN set \set to be sieved
WHILE set > {}: \repeat indented part
PUT min set IN p \smallest member
REMOVE/MULTIPLES \refinement, see below
WRITE p
REMOVE/MULTIPLES:
PUT p IN multiple
WHILE multiple <= n:
IF multiple in set: \present in set?
REMOVE multiple FROM set
PUT multiple+p IN multiple

The last type is the table. Tables are mappings from values of any one
type onto values of any one other type, and as such are a generalisation of
arrays in other programming languages. Standard programming languages
only allow you to map integers (and sometimes a few other similar types)
onto other types. It is one of the biggest surprises, bordering on disbelief, for
experienced programmers, that you may use any type for the indexes of B
arrays. Thus if you want mappings from texts to lists, or tables to numbers,
or tables to other tables, all are possible.

As an example, consider representing a directed acyclic graph as a map-
ping from nodes to lists of nodes:

PUT {[01: {3}; [3]1: {7; 8}; [71: {8}; [(8]1: {}} IN graph

You can write a test to see if two elements are connected as follows:

TEST a connected’to b:

SHARE graph

REPORT b in graphl[a] OR indirectly’connected
indirectly’connected:

REPORT SOME e IN graphla]l HAS e connected’to b

and then write
IF 0 connected’to 8:

Other examples of surprises for the seasoned programmer that the newco-
mer will find unremarkable are in the READ command. If a running pro-
gram is to input a value from the user, the READ command is used. In tradi-
tional languages, you can only read numbers and characters, and furthermore
only constants of these types. However, in B, any type of value may be read,
and further, any expression may be typed as input. This includes the use of
variables, functions and so on.

It may be remarked from the above examples that although the data types
of B are unusual, the kind of commands, or statements, are rather familiar.



There are the usual input and output commands, the assignment command, if
and while commands, and so on. In fact the only unusual feature is the
refinement, such as REMOVE/MULTIPLES and indirectly’/connected
in the above examples. These explicitly support the idea of ‘step-wise
refinement’, so often practised in programming, but so rarely supported by
programming languages.

As you can see, B has a small set of rather powerful data types. This is in
comparison with most other languages that supply you with a number of
low-level tools, that you must then use to build your own high-level tools.

B does it just the other way round. You get high-level tools which you can
use for low-level purposes if you wish. For instance:

© If the numbers you use in a program are all less than a certain limit, you
don’t have to do anything special in B. In other languages, if your
numbers go higher than a certain limit, you must write your own numer-
ical package.

o In traditional languages, if you wish to use sparse arrays, you must write
a package to implement them using the non-sparse arrays in the
language. In B, sparse arrays (i.e. tables) are the default, but you can
use them in a non-sparse way without extra effort.

@ Traditional languages sometimes supply a pointer type, which you can
then use to create data space dynamically. In B, data space is automati-
cally dynamic. Furthermore, if you study the use of pointer types in
other languages, you will see that they are almost always used for sorting
and searching purposes. B supplies these sorting and searching facilities
as primitives. If you still need to use pointers, you can represent them
using B tables, but with additional advantages, for instance that you can
print tables while you cannot print pointers.

Another feature of the simplicity of B lies in its environment. Global vari-
ables are permanent, in the sense that they remain not only while the pro-
grammer is working at the computer, but even after switching off, and return-
ing later. Thus variables may be used instead of ‘files’ in the traditional
sense, and so there is no need for extra file-handling facilities in the language.
Since B variables are dynamic, and unrestricted in size, using them in place
of files causes no difficulties. Quite the reverse in fact, since you now have
the powerful data-types of B at your disposal, allowing random, and indeed
associative, access to the contents.

Compare the following two programs in B and Pascal for counting the
number of characters in a text file. In B:

PUT 0 IN size
FOR Line IN document:

PUT size+#line IN size
WRITE size



In Pascal:

program count(document, output);
var document: text;
c: char;
size: integer;
begin
reset (document) ;
size := 0;
while not eof(document)
do begin
while not eoln(document)
do begin
read(document, c);
size := size + 1
end;
readln(document)
end;
write(size)
end.

This, I contend, speaks for itself. In fact, these two programs illustrate
clearly how compact B programs turn out to be. It is my experience that B
programs are around a quarter or a fifth of the size of their equivalent Pascal
programs (this comparison includes a 1000 line Pascal program which
resulted in a 200 line B program). The ratio against BASIC would be even
further in B’s favour. This clearly has consequences for programmer
efficiency, especially as programmer effort is proportional not to program
length, but a power of program length. Brookes [2] reports that empirical
studies show this power to be around 1.5. This would imply that B is some-
thing like an order of magnitude easier to use than traditional languages.

The other side of this efficiency coin is that, because of its higher level, the
language is no longer so straightforward to implement, and because it is
interpreted, a given program in B will not run as fast as an equivalent pro-
gram written in a non-interactive language. However, we have already noted
that the personal computers of the new generation are so powerful that they
will spend a large proportion of their time idle. This trade-off of computer
time against programmer time is more than reasonable in view of this excess
computational capacity. Furthermore, there are other trade-offs involved
when comparing non-interactive languages with interactive ones, such as the
absence of a translation phase in an interactive language.

Comparing B with BASIC on this score is another matter. BASIC imple-
mentations tend to be slow anyway, yet many people are willing to accept
this slowness in return for interactive access. For instance, Bentley reports [3]
that BASIC on an (apparently large) personal computer he bought ran at 100
instructions per second. This is even slower than the first commercially



produced computers of the 1950°s which ran at 700 instructions per second!
Of course, higher-level commands like those of B take more time individu-
ally, but on the other hand fewer have to be executed to do the same job and
more work is done at the (faster) system level than with a lower-level
language. The combined effect depends on the application: simple programs
— which take little time anyway — will generally run slower, but more com-
plicated tasks may well run faster than if coded in a lower-level language.
But still, even if a given program in B runs slower than acceptable (for
instance in the case of a commercial application which must run as fast as
possible on a slow micro-computer), the programmer efficiency of B still
makes it a good choice for the prototyping phase of a project.

Interaction

Just as with BASIC, any command typed straight in at the terminal will be
executed immediately. Thus you may use all the features of B as a sort of
high-grade calculator:

WRITE root 2
1.41421356237

Furthermore, since user-written programs are called in exactly the same way
as built-in B commands, much of the need for a separate command language
so often found on computers disappears: as already pointed out, variables
serve as files, and since programs are just the equivalent of subroutines in
other languages, parameters can be passed to programs using the normal
parameter passing mechanism of subroutines. In most systems, if parameters
can be passed to a program at all, it is usually with a completely different
mechanism.

One of the demands on an interactive language is that typing be minim-
ised, since so much time is spent at the keyboard. One solution to this used
by some interactive systems is to use abbreviated commands, but this gen-
erally results in very cryptic looking commands. B solves this by having a
dedicated editor that knows much about the syntax and semantics of B. As
an example, consider the above WRITE command. This is the second most
used command in B (the first is PUT) and so when you type a W as first
letter of a command, it is more than likely that you want a WRITE com-
mand. To this end, the moment you do type such a W, the system immedi-
ately suggests the rest of the command to you, by showing WRITE on the
screen. If you do want a WRITE you can then press the ‘accept’ key and the
system positions you so that ycu can type in the expression that you want to
write. If you don’t want a WRITE, but a WHILE say, then you just ignore
the suggestion and type the next character, an H. The system then changes
the suggestion to WHILE, and so on. This also works for the commands you
write yourself (such as the SIEVE/TO unit defined earlier). The system also
knows about things like matching brackets and supplies these for you. Thus
certain typical sorts of typing error are just not possible in B.



{\};"‘?}d‘:\‘ﬁ\- 2
S e LT

TN TN LT
),j‘
.5 s T
-
P = =
= 3
2 ~
—as
—»,:.1,‘ ‘.\R\’ °
e
e

The editor is also used in place of many functions that would normally be
performed by a separate command language. For example, it is possible to
edit the list of units (procedures and functions) that you have: if you delete
an entry in the list using the editor, the corresponding unit disappears.
Another feature of this is that you may edit the list of commands that you
have typed in and executed: this then causes the changed commands to be
re-executed as if you had typed the commands in in that way in the first
place.

Another feature of the interactiveness of B is that declarations are not
used. BASIC users usually perceive this as an advantage because it means
less typing. Users of other languages, such as Pascal on the other hand,
accept declarations on the grounds that they allow type inconsistencies and
other similar errors to be detected before the program is run, therefore reduc-
ing the time taken to get a program correct.



B supplies the advantages of both, by inferring the types of variables from
the way they are used (for instance, if you say 1+a, a must be a number),
and checking that all such uses are consistent. Furthermore, inconsistencies
can be spotted as the command is typed in, increasing the interactive feel of
the language.

Teaching

It is our feeling that B is well suited for teaching purposes. The availabil-
ity of program and data structuring facilities, including support for step-wise
refinement, means that students are less likely to adopt bad habits. More
importantly, because of B’s high-level, a student can quickly get to a level of
competence to produce useful working programs, rather than just trivial exer-
cises.

B is currently being taught at a Dutch school in collaboration with the
CWI to several classes of different school types. However, this has only
recently started.

Implementation

Part of the effort at the CWI is to create an implementation of B. We
have had a pilot implementation running for several years, and have now just
finished a release version.

The original B implementation was written in 1981. It was explicitly
designed as a pilot system, to explore the language rather than produce a
production system, and so the priority was on speed of programming rather
than speed of execution. As a result, it was produced by one person in a
mere 2 months, and while it was slower than is desirable, it was still usable,
and several people used it in preference to other languages.

The second version, just completed, is aimed at wider use, and therefore
speed and portability have become an issue, though the system has also
become more functional in the rewrite. Like the pilot system, it is written in
the programming language C and was produced by first modularising the
pilot system, and then systematically replacing modules, so that at all times
we had a running B system. It was produced in a year by a group of four.
This implementation runs on larger machines that run Unix* (with at least
128 Kbytes of main store) and is freely available for non-commercial use at
the cost of the media.

One of the features of the implementation is the way values are imple-
mented, based on the scheme of Hibbard, Knueven and Leverett [4]. Here,
each value includes a count of how many copies of it there exist. When a
value has to be copied, instead of copying the whole object, only a pointer to
it is copied, and the associated counts are updated. When a count reaches
zero, the value is disposed of.

When a value has to be modified, such as by inserting a value in a list, if its

* A trademark of AT&T Bell Laboratories

11



count is greater than one then the value must first be ‘uniquified’ by (really)
copying it to a fresh area of store (actually only part of it is usually copied
because, for instance, if the list is a list of tables, the tables need only have
their counts updated, since they are not changed themselves.) Already unique
values are modified in siru.

This scheme has one outstanding feature, that the cost of copying is
independent of the size of the value. Therefore there is a size of value above
which this method becomes cheaper than ordinary copying. This critical size
is rather small, and since B values easily become large, it is advantageous.
Furthermore, PUT commands are typically the most executed sort of com-
mand in programs, and so it makes sense to choose a method that favours
them.

The implementation uses B trees (no relation) [5] to represent texts, lists,
and tables. These are a form of balanced trees, and the cost of modifying an
element is only O(log n). Instead of having to copy a whole level of the
value on modification, only a sub-section of the tree needs to be copied.

We have been lucky to receive, through the generosity of IBM Netherlands,
an IBM Personal Computer, and we are now busy transporting the imple-
mentation to it.

The Future

There will be one final polishing of the language before it is finally frozen,
to clear up a few odd corners. However, most work on the system is now
focusing on the environment, for instance to try and do for graphics and
data-entry what up to now we have done for programming.

Further information

For more details of the language, refer to reference [6]. There is a B
newsletter published at the CWI, with further details of the B environment.
An annotated list of B publications is given in an appendix.

Conclusion

The time has come that personal computers have so much power that a
new programming language is called for to take advantage of that power. B
has been designed with just such an aim, to satisfy the needs of people who,
while not being professional programmers, nevertheless need to use personal
computers. Although the language was designed with these non-professionals
in mind, it turns out to be of interest to professionals too: several people in
our institute now use it in preference to other languages.

References

[1] Seymour A. Papert, Computers and learning, in M.L. Dertouzos (ed.),
The Computer Age, MIT Press, 1979, 73-86.

12



[2] F.P. Brookes, The Mythical Man Month, Addison Wesley, 1975.

[3] Jon Bentley, Programming Pearls, Comm. ACM, 27 (1984) 3, 181-184.

[4] P.G. Hibbard, P. Knueven, B.W. Leverett, A Stackless Run-time Imple-
mentation Scheme, in R.B.K. Dewar (ed.), Proc. 4th Int. Conf. on Design
and Implementation of Algorithmic Languages, Courant Institute, New
York, 1976, 176-192.

[5] T. Krijnen & L. Meertens, Making B Trees Work for B, Report IW
219/83, Mathematical Centre, Amsterdam, 1983.

[6] Leo Geurts, An Overview of the B Programming Language, SIGPLAN
Notices, 17 (1982) 12, 49-58.

Appendix: Available publications about B
A number of publications about B are currently available. Unless other-

wise stated, all are published by the CWI; an order form can be found at the

end of this newsletter.

An Overview of the B Programming Language, or B without Tears,

Leo Geurts, CWI report IW 208/82, 11 pages.
This is the first place to go if you want to know more about B. Also
published in SIGPLAN Notices 17 (1982) 12, 49-58.

Draft Proposal for the B Programming Language,

Lambert Meertens, CWI, ISBN 90 6196 238 2, 88 pages.
This book is a specification of the whole language, though rather techn-
ical for the casual reader. It also contains some thoughts on a B sys-
tem. A part of the book, the Quick Reference, also appeared in the
Algol Bulletin 48 (August 1982).

Description of B,

Lambert Meertens & Steven Pemberton, CWI note CS-N8405, 38 pages.
This is the informal definition of B promised in the Draft Proposal. It
aims to provide a reference book for the users of B that is more accessi-
ble than the somewhat formal Draft Proposal. While it is not a text
book, it should also be useful to people who already have ample pro-
gramming experience and want to learn B.

Computer Programming for Beginners — Introducing the B Language (Part I),

Leo Geurts, CWI note CS-N8402, 85 pages.
This is a text-book on programming for people who know nothing
about computers or programming. It is self-contained and may be used
in courses or for self-study. The focus is on designing and writing pro-
grams, as opposed to entering them in the computer, and so on. It
introduces the language, and how to write small programs. Part 2,
which will appear later this year, will treat the language, and program-
ming, in greater depth.

13



A User’s Guide to the B System,

Steven Pemberton, CWI note CS-N8404, 10 pages.
A brief introduction to using the current B implementation.

B Quick Reference Card.
A single card containing all the features of the language, the editor, and
the implementation, for quick reference when using B.

An Implementation of the B Programming Language,

Lambert Meertens & Steven Pemberton, 8 pages.
This gives an overview of the implementation and some of the tech-
niques used in it. Not published by the CWIL. To appear in USENIX
Washington Conference Proceedings (January 1984).

Making B Trees Work for B,

Timo Krijnen & Lambert Meertens, CWI report IW 219/83, 13 pages.
This describes a method of implementing the values of B. It is rather
technical.

Incremental Polymorphic Type-Checking in B,

Lambert Meertens, CWI report IW 214/82, 11 pages.
B allows you to use variables without having to declare them, and yet
gives you all the safety that declarations would supply. This paper
describes how this is achieved, but is very technical. Definitely not for
the faint-hearted. Also published in Conference Record of the 10th
Annual ACM Symposium on Principles of Programming Languages,
ACM, 1983, 265-275.

On the Design of an Editor for the B Programming Language,

Aad Nienhuis, CWI report IW 248/83, 16 pages.
Gives an overview of the design of a pilot version of the B dedicated
editor.

On the Implementation of an Editor for the B Programming Language,

Frank van Harmelen, CWI report 220/83, 18 pages.
Gives details of a pilot implementation of the B dedicated editor.

Towards a Specification of the B Programming Environment,

Jeroen van de Graaf, CWI report CS-R8408, 23 pages.
This report contains an informal description and a tentative
specification of the environment.

The B Newsletter,
This is produced to keep interested parties in touch with developments
in the language and its implementation, and to provide a forum for dis-
cussions. Issues 1 and 2 have already appeared.

14



